9 research outputs found

    Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory

    Full text link
    We describe categorical models of a circuit-based (quantum) functional programming language. We show that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider both a simple first-order linear language for circuits, and a more powerful host language, such that the circuit language is embedded inside the host language. Our categorical semantics for the host language is standard, and involves cartesian closed categories and monads. We interpret the circuit language not in an ordinary category, but in a category that is enriched in the host category. We show that this structure is also related to linear/non-linear models. As an extended example, we recall an earlier result that the category of W*-algebras is dcpo-enriched, and we use this model to extend the circuit language with some recursive types

    Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory

    Full text link
    Inductive datatypes in programming languages allow users to define useful data structures such as natural numbers, lists, trees, and others. In this paper we show how inductive datatypes may be added to the quantum programming language QPL. We construct a sound categorical model for the language and by doing so we provide the first detailed semantic treatment of user-defined inductive datatypes in quantum programming. We also show our denotational interpretation is invariant with respect to big-step reduction, thereby establishing another novel result for quantum programming. Compared to classical programming, this property is considerably more difficult to prove and we demonstrate its usefulness by showing how it immediately implies computational adequacy at all types. To further cement our results, our semantics is entirely based on a physically natural model of von Neumann algebras, which are mathematical structures used by physicists to study quantum mechanics

    Quantum Programming with Inductive Datatypes

    Get PDF
    Inductive datatypes in programming languages allow users to define useful data structures such as natural numbers, lists, trees, and others. In this paper we show how inductive datatypes may be added to the quantum programming language QPL. We construct a sound categorical model for the language and by doing so we provide the first detailed semantic treatment of user-defined inductive datatypes in quantum programming. We also show our denotational interpretation is invariant with respect to big-step reduction, thereby establishing another novel result for quantum programming. Compared to classical programming, this property is considerably more difficult to prove and we demonstrate its usefulness by showing how it immediately implies computational adequacy at all types. To further cement our results, our semantics is entirely based on a physically natural model of von Neumann algebras, which are mathematical structures used by physicists to study quantum mechanics

    Convexity and order in probabilistic call-by-name FPC

    No full text
    Kegelspitzen are mathematical structures coined by Keimel and Plotkin, in order to encompass the structure of a convex set and the structure of a dcpo. In this paper, we ask ourselves what are Kegelspitzen the model of. We adopt a categorical viewpoint and show that Kegelspitzen model stochastic matrices onto a category of domains. Consequently, Kegelspitzen form a denotational model of pPCF, an abstract functional programming language for probabilistic computing. We conclude the present work with a discussion of the interpretation of (probabilistic) recursive types, which are types for entities which might contain other entities of the same type, such as lists and trees

    Hybrid divide-and-conquer approach for tree search algorithms

    Full text link
    As we are entering the era of real-world small quantum computers, finding applications for these limited devices is a key challenge. In this vein, it was recently shown that a hybrid classical-quantum method can help provide polynomial speed-ups to classical divide-and-conquer algorithms, even when only given access to a quantum computer much smaller than the problem itself. In this work we study the hybrid divide-and-conquer method in the context of tree search algorithms, and extend it by including quantum backtracking, which allows better results than previous Grover-based methods. Further, we provide general criteria for polynomial speed-ups in the tree search context, and provide a number of examples where polynomial speed ups, using arbitrarily smaller quantum computers, can still be obtained. This study possible speed-ups for the well known algorithm of DPLL and prove threshold-free speed-ups for the tree search subroutines of the so-called PPSZ algorithm - which is the core of the fastest exact Boolean satisfiability solver - for certain classes of formulas. We also provide a simple example where speed-ups can be obtained in an algorithm-independent fashion, under certain well-studied complexity-theoretical assumptions. Finally, we briefly discuss the fundamental limitations of hybrid methods in providing speed-ups for larger problems.Comment: 48 pages, 13 figure
    corecore